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Introduction: This paper investigates the
performance of a rover equipped with an ASD
FieldSpec 4 Spectrometer tasked to map the spectral
composition of an analog planetary environment on
Mauna Kea, Hawai’i. The rover's onboard computer
runs a Gaussian Process active learning algorithm,
with the intention to comprehensively map the
environment while reducing reliance on human
intervention — a critical advantage for operations in
space that limit communications and emphasize
ambitious mission timelines. Key performance metrics,
including model accuracy, convergence, and samples
collected, are evaluated to assess the algorithm's
effectiveness in intelligent exploration. Mechanically,
the rover provides mobility to a location, calibrates the
spectrometer with automated white referencing, and
measures payload readings with an active light source
shielded by an awning. This research demonstrates the
rover's adaptability and reliability in analog
extraterrestrial environments, moving us closer to a
rover with increased autonomy suitable for space
operations.

Background: The University of Hawai’i at
Manoa’s Robotic  Space Exploration (RoSE)
Laboratory has previously mapped spectral-spatial
distribution of terrain material and conducted
simulations of rover movement and decision making
powered by a Gaussian Process active learning model.

Spectral-Spatial Investigations on Hawai’i [1]:
Mauna Kea, a dormant volcano located on the Big
Island of Hawaii, is a test site that research agencies
around the world Ileverage to rehearse space
operations. One such program was the 2010
International Lunar Surface Operations In Situ
Resource Utilization Analog Test, which was a
coordinated effort amongst the Canadian Space
Agency, the German Aerospace Center, and the
National Aeronautics and Space Administration, with
the assistance of the PISCES program hosted through
the University of Hawai’i at Hilo [3]. Researchers with
RoSE Lab gathered measurements that provided
insight into the locations across Mauna Kea which
have the highest correlation with the lunar surface
samples collected from the Apollo 11, 12, 14, 16, and
17 missions. According to the spectral-spatial
investigation, multiple spots on Mauna Kea have high
spectral similarity to the samples collected from the
highlands of the Moon. One of these spots, detailed in
the methodology section, was utilized as the testing
site for rover data collection.

Active  Learning for Constrained Trajectory
Exploration [2]: Active learning has the potential to
dramatically decrease mission timelines for exploration
missions by increasing autonomy of robots. Mobile
robots, like rovers, traverse environments in
trajectories constrained to the surface environments
along a sequence of waypoints. Historically, these
waypoints are dictated by human teleoperators but
waiting on this communication elongates the mission
timeline and increases risk of failure. Naive
autonomous exploration preloads an exploration
pattern to ensure gridded coverage of the environment
but these science-blind methods are inefficient. Active
learning incorporates historical measurements to train
a surrogate model (Gaussian Process) that predicts the
spatial distribution of a target variable of interest.
Previous results show that active learning strategies are
more sample and distance efficient in proposing
information dense trajectories while also offering
model convergence.

Hardware Implementation: The current rover
design is contained in a 4U (borrowed from cubesat
convention) rover structure, complete with an ASD
FieldSpec 4 Spectrometer as seen in Figure 1.

Figure 1: Rover attached with all hardware on
lunar surface analog
Several measures are taken to ensure data collection
can produce consistent results without being restricted
by natural lighting conditions. The rover awning
ensures the fiber optic cable terminal is shaded from
external light sources. An artificial light source is
utilized to ensure that the lighting conditions at every
site are consistent. Along with this, the spectrometer’s
white referencing mechanism, which calibrates the
spectrometer, has been automated. The electronics
utilized on the rover consist of a Jetson Orin Nano
Devkit, two Roboclaw motor controllers, one relay
attached to two LED lights, a U-blox ZED-F9R GPS,
an ANNIMOS digital servo, and an L298N motor
controller for the rover’s linear actuator. The batteries
utilized are 71Wh “Omni 20+” portable power banks
fitted with AC, DC, USB-A, and USB-C charging
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ports. Two are onboard the rover for normal
operations, along with the ASD 4 spectrometer battery.

Methodology: A field demonstration was
conducted March 18" - 22" 2024. This test utilized
correlation data from the first spectra sampled on the
grid when taking ground truth measurements.

Active Learning Algorithm: The Gaussian Process
Active Learning (GPAL) algorithm, fitted with a
Matern kernel, is outlined in Algorithm 1.

Algorithm 1 Gaussian Process Active Learning

1: Select n random samples from Dy,
2: Add n samples to Dy,
3:fori=1to Dy,./2

. Train Gaussian Process model with D,,,;,
Calculate Uncertainty = CB,pe; - CBioyer
Identify nearest neighbor with the highest
uncertainty
7:  Move to location of highest uncertainty and

append measurement to Dy,

SARANE

Experimental Design. The experimental plan was
based heavily around battery capacity and weather
conditions. The trajectory suggestion policy (the
contribution of this work) is autonomous while other
operations, such as movement and payload operations,
are manual. Testing began with gathering ground truth
data, followed by utilizing the active learning model.
The grid size for the testing site was an 11x11 square
(121 testing points), with each point being 2m apart
(484m? area). A science-blind trial was run in a snake
pattern prior to performing the first active learning
trials. This data was utilized as the ground truth. In
total, two ground truth and six active learning trials
were taken. GPS coordinates of the [0, 0] grid point are
as follows: N 19°45.4791 W 155°27.5006.

Preliminary Results: Figures 2 and 3 depict the
trajectory of the rover on the surface. Figure 4 shows
the variance and RMSE of the samples. The active
learning trial converges in 54 samples as compared to
102 for the science blind method. RMSE for the AL
method is higher than in the science blind, however,
weather conditions and exact sample location are not
consistent. If we were to sample the ground truth
spectra along the active learning path, GPAL would
converge to the minimum RMSE.
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Figure 2: Science-Blind Active Learning Method
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Figure 3: GPAL Algorithm
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Figure 4: Variance and RMSE of Science Blind
VS AL Method

Conclusion: Integrating a GP active learning
algorithm on a rover and testing its performance on a
planetary analog is a large step forward in developing
rover autonomy for future space exploration. Through
this research, we provide insight to the enhanced
performance of autonomous active learning in a real
environment that is traceable to space missions, which
won’t require human teleoperation.
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