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Introduction & Motivation
Research Goal: 

Autonomous planetary surface exploration

Analogue Field Test Objectives:

1. Investigate the analogue through spectral 
measurements.

2. Characterize water ice spectrum across a 
lunar surface analogue.

3. Demonstrate an active learning algorithm 
in a lunar surface analogue.

Utilize a spectrometer on a rover with machine learning to collect spectral data from the soil 
[trajectory suggestion policy = autonomous & movement/payload operations = manual] 3



Overview
Research Goal: 

Autonomous planetary surface exploration

Previous Research:

1. Investigate Mauna Kea spectrally
2. Investigate performance differences 

between ML algorithms

Application:

Gather sectral data spatially distributed in real 
environments *autonomously*
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Background on Previous Spectra-Spatial Characterization 
Purpose: evaluate the likeness of the Big 
Island as a lunar surface analogue 

Method: spectra-spatial investigation with 
a visible and near-infrared (VNIR) 
spectrometer

Product: correlation matrices

Conclusion: the spectral measurements in 
the analogue are not consistent; It is 
possible to discern which analogue 
measurement has the highest similarity 
to any lunar returned sample by 
correlation coefficients.

[1] Wang H. et al. (2023) Aerospace Research Central, 1-24.
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● Autonomous Robots for Space Exploration
○ Information Exchange, Performance Differences between ML 

Algorithms, Testing Environments

● What is a GP?
○ A process in which a finite set of random variables has a joint Gaussian 

distribution

● Experimental Procedure
○ Load Environment
○ Define Exploration Strategy
○ Define Hyperparameters
○ Initialize Agent’s Starting Location
○ Seed Training Data with 10 Points
○ Explore the Surface

Background on Gaussian Process Active Learning
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Background on Gaussian Process Active Learning

Surface environments the agent traverses

True value of target outputs the rover learns

Shoemaker craterParabola Townsend

TownsendParabola LAMP LRO hydroxyl
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Background on Gaussian Process Active Learning

Analysis & Results

● The GP model required 
less time to train the 
model with higher 
accuracy and less samples 
than the BNN model

● The GP model was the 
most accurate in 
identifying the surface’s 
true minimum location

[2] Akins S. and Zhu F. (2023) Aerospace Research Central, 1-15. 
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Hardware Overview Light Source: Halogen Bulb @ ~3050K; 900 Lumens

Controllers

Awning

Spectrometer
Electronics Box

Batteries

Motors, Mounts, & Wheels
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Specifications of Electronics
Electronics:

● Jetson Orin Nano Devkit (AI capable 
computation)

● Halogen Lamp & Relay (using ~10W 
power, rated for 50W)

● GPS (precision ~5-10 meters)
● Motors & controllers (ANNIMOS 

Servo, Roboclaw motor controllers)

Data Products:

● Spectrometer Data (ASD Files)
● Image Data (Taken on phone)
● GPS Data (Taken with watch GPS)
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Mauna Kea from Mar 18 - Mar 22

● Ran 7 tests
○ 2 ground truth trials [snake]
○ 5 active learning trials [various kernels]

● Grid size: 11x11 square [121 points; 
484m2]

● GPS Coordinates: N 19°45.4791 W 
155°27.5006

Experimental Campaign
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Experimental Campaign 14



Sampling Operations per Spot
1.  White Reference for Spectrometer 2.  Remove WR & Take Spectral Meas.
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Sampling Operations per Spot
3.  Run Code to Process Data

- Process Spectra through ViewSpec Pro
- ASCII Export > Reflectance > Print Header Information

- Correlation data
- Waypoint data

4.  Move to Green Point & Repeat!
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Ground Truth Generation
- 11x11 grid with a 2 meter 

discretization
- Collected in snake pattern
- Spectral measurement was taken at 

each point
- Correlation was calculated between 

the bottom left corner (0,0) spectra
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Machine Learning Implementation
● Gaussian Process Active Learning Algorithm

○ Matern Kernel
○ Correlation values retrieved from the (0,0) 

Spectra
———————————————————
Algorithm 1 Gaussian Process Active Learning
———————————————————
1: Select n random samples from Dsample
2: Add n samples to Dtrain
3: for i = 1 to Dsample/2
4: Train Gaussian Process model with Dtrain
5: Calculate Uncertainty = CBupper - CBlower
6: Identify nearest neighbor with the 
            highest uncertainty
7: Move to location of highest uncertainty
            and append measurement to Dtrain
———————————————————

● AL models tend to be more sample and 
distance efficient in proposing trajectories 
while offering model convergence as 
compared to science blind methods
○ Verified this in simulation, now moving 

to real-world application

(0,0) Reference
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Calculate Correlation

Collect and Process Sample 

White reference and spectra save 
(ASD file) using RS3 software

Utilize pyautogui to automate 
processing ASD -> text files using 

ViewSpecPro software 
(“tab” activates process) 

Use spectra text file to calculate 
correlation to reference file (Apollo 

or (0,0) spectra)

Gaussian Process Active Learning 
Algorithm

Add grid coordinate point to x_train 
Add correlation number to y_train

Retrain model using new x_train 
and y_train 

Evaluate GP model for confidence 
bounds and calculate uncertainty 

(uncertainty = upper - lower bound)

Proposes and displays (matplotlib) 
nearest neighbor coordinate with 

the highest uncertainty

Software Architecture for Field Testing GPAL Algorithm

RS3 Software 
(Manual)

Field Testing Code 
(Auto)

Spectrometer 
Data

Correlation
Number

Waypoint

Updated Model
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Field Testing Code 
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Example .txt file data

Wavelength  asd00000.asd
350  7.73733821537864 
351  9.00554398047202 
352  9.16924947112074 
353  8.90135910630817 
354  7.2013699706968 
355  6.68568808833797 
356  7.93816387914794 
357  7.38320907131274 
358  9.15295271837116 
359  12.7507624427325 
360  12.0749777326485 
361  10.465932997854 
362  8.32434348043976 
363  7.73930455593183 
364  10.4182501835677 
365  11.1219176699201 
366  16.3171941134116 
367  35.9085999449558
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Green = (0,0) spectra
Spectral Correlation: 0.923903032002655
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GT Trial #2 [Matern Kernel]

Converges in 104 samples to 0.0227 RMSE This trial is utilized as the Ground Truth 
(GT). The rover’s movement is considered 
to be Science Blind.

26



AL Trial #4 [Matern Kernel & (0,0) Spectra Correlation]

Converges in 49 samples to 0.0255 RMSE
27



Conclusion & Future Work
● Moving small steps forward towards rover 

autonomy in a real environment traceable to a 
lunar space mission

● Performance difference between AL vs SB 
methods
○ AL converges in ~half as many samples, traveled to 49 

points instead of 104, RMSE at convergence would have 
been lower if data collection was the exact same as 
that found during the GT Trial

● Improve the rover design & operations
○ Improve the spectrometer integration to allow for 

better data collection [decrease noise]
○ Limit human operation of the rover’s mechanical 

functions
○ Test the rover in an environment where it would be 

required to map out water distribution with its ML 
algorithm
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Thank you!
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Hyperspectral reflectance mapping of cinder cones at 
the summit of Mauna Kea and implications for 
equivalent observations on Mars Expectation 

vs. Reality
Spectral Measurements

Quality of Spectral Measurements30
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