Field Demonstration of Gaussian Process Active Learning of

Rover Mapping Spectral Composition in Hawaii’s Lunar Surface
Analog
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Intfroduction & Motivation

Research Goal:

Autonomous planetary surface exploration

Analogue Field Test Objectives:

1. Investigate the analogue through spectral
measurements.

2. Characterize water ice spectrum across a
lunar surface analogue.

3. Demonstrate an active learning algorithm
in a lunar surface analogue.

Utilize a spectrometer on a rover with machine learning to collect spectral data from the soil
[trajectory suggestion policy = autonomous & movement/payload operations = manual]
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Overview
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Background on Previous Spectra-Spatial Characterization

Purpose: evaluate the likeness of the Big
Island as a lunar surface analogue

Method: spectra-spatial investigation with
a visible and near-infrared (VNIR)
spectrometer

Product: correlation matrices

Conclusion: the spectral measurements in
the analogue are not consistent; It is
possible to discern which analogue
measurement has the highest similarity
to any lunar returned sample by
correlation coefficients.

[1] Wang H. et al. (2023) Aerospace Research Central, 1-24.
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Background on Gaussian Process Active Learning

GP ion with 0 training points

« Autonomous Robots for Space Exploration
o Information Exchange, Performance Differences between ML

Algorithms, Testing Environments

. WhatisaGP?

o Aprocessin which a finite set of random variables has a joint Gaussian
distribution

« Experimental Procedure
o Load Environment

o  Define Exploration Strategy

o Define Hyperparameters

o Initialize Agent’s Starting Location
o Seed Training Data with 10 Points
o Explore the Surface




Background on Gaussian Process Active Learning
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Background on Gaussian Process Active Learning

rover on surface [-3. -3.] B-NN uncertainty B-NN residual

Analysis & Results

e The GP model required

: n less time to train the

o model with higher
accuracy and less samples
than the BNN model

e The GP model was the
most accurate in
identifying the surface’s
true minimum location

3
RMS error

—| ) — — o [2] Akins S. and Zhu F. (2023) Aerospace Research Central, 1-15.
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Specifications of Electronics
Electronics:

« Jetson Orin Nano Devkit (Al capable
computation)

. Halogen Lamp & Relay (using ~10W
power, rated for 50W)

« GPS (precision ~5-10 meters)

« Motors & controllers (ANNIMOS
Servo, Roboclaw motor controllers)

Data Products:

« Spectrometer Data (ASD Files)
. Image Data (Taken on phone)
« GPS Data (Taken with watch GPS)

12



Experimental Campaign

Mauna Kea from Mar 18 - Mar 22

« Ran 7 tests

o 2 ground truth trials [snake]
o 5active learning trials [various kernels]

Grid size: 11x11 square [121 points;
484 m?]

GPS Coordinates: N 19°45.4791 W
155°27.5006




Experimental Campaign




Sampling Operations per Spot

1. White Reference for Spectrometer

{5 ViewSpec Pro Graph — m]
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Sampling Operations per Spot

3. Run Code to Process Data
Process Spectra through ViewSpec Pro

ASCII Export > Reflectance > Print Header Information
Correlation data

Waypoint data

Rover Exploration

=
o

Y
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4. Move to Green Point & Repeat!
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Ground Truth Generation

- 11x11 grid with a 2 meter
discretization

- Collected in snake pattern

- Spectral measurement was taken at
each point

- Correlation was calculated between
the bottom left corner (0,0) spectra

Rover Exploration

10 +

10
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Machine Learning Implementation

« Gaussian Process Active Learning Algorithm
o Matern Kernel
o Correlation values retrieved from the (0,0)
Spectra

Algorithm 1 Gaussian Process Active Learning

1: Select n random samples from Dg;mple

2: Add n samples to Dy4in

3:fori=1t0 Dy;mpie/2

4: Tralin lGaussian Process model with Dy,in

5: Calculate Uncertainty =CB -CB

6: Identify nearest neig%bor with the over
highest uncertainty

T Move to location of highest uncertainty
and append measurement to Dyin

« AL models tend to be more sample and
distance efficient in proposing trajectories
while offering model convergence as
compared to science blind methods

o Verified this in simulation, now moving
to real-world application
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Software Architecture for Field Testing GPAL Algorithm
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processing ASD -> text files using
ViewSpecPro software
(“tab” activates process)

A 4

Calculate Correlation

Use spectra text file to calculate
correlation to reference file (Apollo
or (0,0) spectra)

Spectrometer
Data

Updated Model

Correlation
Number

Waypoint

Gaussian Process Active Learning
Algorithm

e ™

Add grid coordinate point to x_train

Add correlation number to y_train

\ 4

Retrain model using new x_train
and y_train

\ 4
e ™
Evaluate GP model for confidence
bounds and calculate uncertainty
L (uncertainty = upper - lower bound)

\ 4
N
Proposes and displays (matplotlib)
nearest neighbor coordinate with
the highest uncertainty

]
]

RS3 Software
(Manual)

Field Testing Code
(Auto)

Spectral Data

[D:ROSE Lab Rover Fied Testing FT2 - Data AL Teial 323400063 154

19




Software Architecture for Field Testing GPAL Algorithm

Collect and Process Sample

White reference and spectra save
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Software Architecture for Field Testing GPAL Algorithm
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Software Architecture for Field Testing GPAL Algorithm
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Software Architecture for Field Testing GPAL Algorithm
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Software Architecture for Field Testing GPAL Algorithm
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Software Architecture for Field Testing GPAL Algorithm
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GT Trial #2 [Matern

Kernel]

Spectral Correlation Exploration Spectral Correlation Measured aird \ 2
(Position) VS Predictions {2 Viewspec Pro Graph
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This trial is utilized as the Ground Truth
(GT). The rover’s movement is considered
to be Science Blind.
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AL Trial #4 [Matern Kernel & (0,0) Spectra Correlation]
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Conclusion & Future Work

« Moving small steps forward towards rover
autonomy in a real environment traceable to a
lunar space mission

. Performance difference between AL vs SB

methods
o AL convergesin ~half as many samples, traveled to 49
points instead of 104, RMSE at convergence would have
been lower if data collection was the exact same as
that found during the GT Trial

. Improve the rover design & operations
o Improve the spectrometer integration to allow for
better data collection [decrease noise]
o Limit human operation of the rover’s mechanical
functions
o Testtheroverin an environment where it would be
required to map out water distribution with its ML

algorithm
28
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